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Abstract
Data-flow analyses that include some model of the data-flow be-
tween MPI sends and receives result in improved precision in the
analysis results. One issue that arises with performing data-flow
analyses on MPI programs is that the interprocedural control-flow
graph ICFG is often irreducible due to call and return edges, and the
MPI-ICFG adds further irreducibility due to communication edges.
To provide an upper bound for iterative data-flow analysis complex-
ity, one needs to have a general idea as to the depth of common flow
graphs. Unfortunately, computing the depth of an irreducible graph
is NP-complete.

In this paper, we compare the depth-based iteration bounds for
several MPI benchmarks with the actual number of iterations re-
quired for two data-flow analyses. We are able to compute the depth
despite the worst-case exponential complexity of the depth-analysis
algorithm by first reducing the reducible parts of the flow graph
and then explore paths in the reduced graph. Our results show that
on average the reduced graphs are 80% smaller than the original
graphs and have 90% fewer cycle-free paths, resulting in a 10x
faster algorithm. We also observe that although the number of itera-
tions over the flow graph is bounded by the lattice height multiplied
by the graph depth, the graph depth is clearly the dominating factor
and provides a close approximation to the complexity of iterative
data-flow analysis over MPI programs.
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1. Introduction
Many parallel programs are written using MPI (Message Passing
Interface) [23]. With the push for exascale computing, the expec-
tation is that MPI will still be the main parallelization mechanism
between nodes on a machine [17]. Therefore, techniques for stati-
cally and dynamically analyzing MPI programs will become ever
more crucial.

Researchers have developed techniques for performing data-
flow analysis on MPI programs [7, 26, 28]. Data-flow analysis is
the basis for bug-finding analyses [18], analyses that find security
issues such as buffer overflow [14], and performance optimizations
such as those based on activity analysis in the context of automatic
differentiation [6]. Our previous research involving data-flow anal-
ysis for MPI programs has shown that extending the data-flow anal-
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ysis so that information flows over communication edges between
MPI sends, receives, and reduction primitives enables more precise
analysis.

A complication is that the modified interprocedural control-
flow graphs (dubbed MPI-ICFGs) used in MPI-aware data-flow
analysis are frequently irreducible. Many techniques for improving
the efficiency of data-flow analysis, such as interval analysis [4,
8] and path compression [29], depend on the control-flow graph
being reducible. This is not unreasonable as most programs are
reducible [1, 3]. It has also been shown that techniques such as
node splitting can make a control-flow graph reducible [1, 3, 10].
Unfortunately, these techniques do not generally apply to MPI-
ICFGs.

This paper makes the following contributions:

• Description of why MPI-ICFGs are frequently irreducible.
• Explanation of why techniques such as node splitting are not

applicable.
• An algorithm for computing the depth of a graph that leverages

polynomial time algorithms for computing the reducible parts
of the graph and therefore enables analyzing larger graphs more
efficiently even though it is still worst-case exponential.

• Depth results using that algorithm for a collection of MPI
benchmark programs, including several NPB benchmarks and
small applications, along with a comparison of the depth-based
upper bound with the actual data-flow analysis complexity.

In this paper we explore the algorithmic complexity of performing
data-flow analysis on MPI programs. Section 2 reviews the MPI-
ICFG and a data-flow analysis framework for the MPI-ICFG. Sec-
tion 3 reviews the concept of depth and its relationship with the
algorithmic complexity of iterative data-flow analysis. Section 4
describes why MPI-ICFGs are irreducible and presents an algo-
rithm for computing the depth of an irreducible graph. Section 5
shows that although the depth analysis algorithm is worst-case ex-
ponential in the size of the graph, reducing the graph as much as
possible enables us to present depth analysis results on a number of
benchmarks. Section 6 concludes.

2. Data-Flow Analysis for MPI Programs
Data-flow analysis for MPI programs must capture the possible
data flow between sending and receiving MPI calls, as well as the
traditional data flow along control-flow paths. Most MPI programs
do not have all of their MPI calls in one procedure; therefore, in-
terprocedural data-flow analysis is necessary. This section reviews
the MPI-ICFG, which is used to represent MPI programs. This
section also reviews a data-flow analysis framework for the MPI-
ICFG [28].



2.1 Intraprocedural Data-Flow Analysis using the CFG
First we review data-flow analysis for a single procedure, which is
also called intraprocedural data-flow analysis. Intraprocedural data-
flow analysis is formulated over a control-flow graph (CFG), which
represents a procedure with a node for each statement1 and edges
between statements indicating possible control flow. Formally, a
control-flow graph is specified as CFG = {V, E}, where V is the
set of nodes in the graph, and E is the set of edges with (n1, n2) ∈
E indicating that control can flow between the statement in node n1

and the statement in node n2. Each node n has a set of predecessors
pred(n) and a set of successors succ(n), such that (n1, n2) ∈ E
implies that n1 ∈ pred(n2) and n2 ∈ succ(n1).

Data-flow analysis involves assigning IN(n) and OUT (n) sets
to each node n in the control-flow graph CFG. The IN and
OUT sets contain either program entities such as variables and
statements or such program entities paired with information from
a partially ordered set referred to as the lattice. Iterative data-
flow analysis recalculates the IN and OUT sets until convergence
occurs. When two or more control paths in the CFG merge, a
meet operation occurs between the lattice values for a particular
program entity. For a forward data-flow analysis, the result of
a meet operation is the IN(n) set for the node n that directly
succeeds the merging control-flow paths. Additionally in a forward
analysis, the OUT (n) set for the node n is calculated by applying
a transfer function fs(IN(n)) to the IN(n) set. The transfer
function relies on the semantics of the statement s within n and
the data-flow analysis being performed.

Reaching constants is a canonical example of a nonseparable,
forward data-flow analysis. A nonseparable analysis is one where
the data-flow value associated with one entity like a variable is
dependent on data-flow values associated with other entities. We
are interested in nonseparable analyses, because their precision can
improve when data-flow information is propagated between an MPI
send and receive.

In reaching constants, each variable v is paired with a value
cv . The possible constant values are top ", which indicates that no
information is known about the variable; bottom⊥, which indicates
the variable is not constant; or a constant value c, which indicates
the variable holds the value c. Before performing the analysis, every
IN and OUT set is initialized with a pair 〈v, cv〉 for each variable
v. The IN set at the entry of the program is initialized with 〈v,⊥〉
and all other sets are initialized with 〈v,"〉.

The meet operation & for reaching constants determines a value
for each variable when two OUT sets are merged. The result of the
meet operation 〈v, c1〉&〈v, c2〉 is 〈v, cr〉, where cr is as follows: if
c1 equals c2, then cr is c1; if c1 equals", then cr is c2; if c2 equals
", then cr is c1; otherwise, cr is ⊥.

At an assignment statement, the transfer function evaluates the
right-hand side of the statement to a constant value c or ⊥ and
then pairs that resulting value with the left-hand-side variable in
the OUT set for the statement. In Figure 1, the variable x will be
paired with the constant value 1 in the OUT set for statement x =
x + 1.

2.2 Interprocedural Data-Flow Analysis using the ICFG
For interprocedural data-flow analysis, we generate an interproce-
dural control-flow graph (ICFG) [21]. The ICFG includes control-
flow edges between procedure calls and the control-flow graphs for
the called procedures. The ICFG can be constructed as follows:
(1) construct a control-flow graph for each procedure, (2) split each
control-flow graph node containing a procedure call into a call node
and a return node, (3) add an edge from the call node to the control-
flow graph entry node of the called procedure, and (4) add an edge

1 This can be generalized to basic blocks.

begin program (0)
x = 0 (1)
z = 2 (2)
b = 7 (3)
if (rank == 0) then (4)

x = x + 1 (5)
b = x * 3 (6)
send(x) (7)

else (8)
receive(y) (9)
z = b * y (10)

endif (11)
f = reduce(SUM,z) (12)

end program (13)

Entry

x = x + 1

rank .eq. 0

send(x)

receive(y)

f = reduce(SUM,z)

x = 0

z = 2

Exit

z = b * y

b = 7

b = x * 3

Figure 1. A small SPMD program and the corresponding simpli-
fied MPI-ICFG.

from the control-flow graph exit node of the called procedure to the
return node. Data-flow analysis frameworks for control-flow graphs
are typically implemented so that only the transfer and meet opera-
tions must be specified [11, 15, 29]. Data-flow analysis over ICFGs
also requires a specification of how information is mapped from the
caller to the callee, and vice versa.

2.3 Interprocedural Data-Flow Analysis using the
MPI-ICFG

For data-flow analysis of MPI programs, we use an MPI-ICFG,
which augments an ICFG with communication edges between pos-
sible send and receive pairs, among all calls to broadcast, and
among all calls to reduce. A communication edge connects the call
node of the sending call to the return node of the receiving call.
We perform an interprocedural reaching constants analysis and per-
form a matching using the MPI semantics to reduce the number of
communication edges that are conservatively necessary. For broad-
cast and reduce, we eliminate communication edges where the root
parameters statically evaluate to different constants. For send and
receive pairs, we eliminate communication edges where the tag or
communicator do not match.

The communication edges in an MPI-ICFG are not control-flow
edges. Only the data specified in the sending call flows along a
communication edge. Accordingly, a data-flow analysis on MPI



send(x) commOUT(n)

OUT(p1)

OUT(n)

OUT(p2)
OUT(pn)

...

IN(n)

n:

Figure 2. Control-flow edges and communication edges incident
on a send node.

receive(y) commIN(n)

OUT(p1)

OUT(n)

OUT(p2)
OUT(pn)

...

IN(n)

n:

commOUT(q1)

commOUT(q2)

commOUT(qm)

...

Figure 3. Control-flow edges and communication edges incident
on a receive node.

programs should allow only a value for the variable being sent/re-
ceived to be transferred across a communication edge.

An MPI-ICFG is specified as ICFGMPI = {V, E, C}, where
V is the set of nodes in the graph, E is the set of control-flow
edges and call and return edges, and C is the set of communication
edges in the graph. Extending any forward, nonseparable data-flow
analysis for operation over the MPI-ICFG involves defining the
communication transfer function fcomm that calculates the value to
propagate over outgoing communication edges based on the IN(n)
set for a send node and the variable being sent (see Figure 2). For
reaching constants, the communication transfer function is

commOUT (n) = fcomm(IN(n)) = {cx|〈x, cx〉 ∈ IN(n)},

where n is the node containing the statement send(x) and cx is
the value assigned to the variable x in the IN(n) data-flow set
for the send node. In Figure 1, the value 1 will be propagated over
the communication edge between send(x) and receive(y). Note
that for simplicity, the example in Figure 1 does not include any call
and return edges. Examples with call and return edges are provided
in Section 4.2.

The transfer function for the receive statement must be defined
so that it uses the value propagated over all incoming communi-
cation edges as input. Assume that an MPI-ICFG has been con-
structed such that there are communication edges between send and
receive statements that conservatively estimate possible communi-
cations (see Figure 3). For each receive statement, we denote the

Entry

if … goto exit

1:    a = b;

2:    b = c;

3:    c = a;

Exit

Figure 4. Control-flow graph with three statements.

set of possible send nodes identified by the incoming communi-
cation edges as commpred(n). In Figure 1, the receive(y) node
has only the send(x) node in its commpreds(n) set. For reaching
constants, the transfer function for the receive node can be defined
as

OUT (n) = (IN(n)− {〈y, cy〉})
∪ {〈y,&q∈commpred(n)fcomm(IN(q))〉},

where & is the symbol for the meet operation and the variable
y is being set to the meet of all the values that result from ap-
plying the communication transfer function to IN(q) set for all
source nodes q of the incoming communication edges. In Fig-
ure 1, the OUT set for the node containing the receive(y) state-
ment will include the following set of variables paired with values:
{〈x, 0〉, 〈z, 2〉, 〈b, 7〉, 〈f,⊥〉, 〈y, 1〉}.

3. Data-Flow Analysis, Complexity, and Depth
The possible values being propagated during data-flow analysis can
be organized into a lattice, or partially ordered set. The algorithmic
complexity of iterative data-flow analysis is determined based on
lattice height and flow graph depth [2]. We use a nonseparable,
forward data-flow analysis called vary analysis [16]. The example
program in Figure 4 helps illustrate these concepts.

3.1 Vary Analysis
Vary analysis is a domain-specific forward data-flow analysis used
in some implementations of automatic differentiation [13], which
is a type of program transformation that transforms a subprogram
that computes a mathematical function into a subprogram that
computes the (partial) derivatives of that function. Vary analysis
seeks to identify the set of variables that depend on the subset of
input variables designated as independent variables for purposes
of differentiation. This enables the automatic differentiation tool to
avoid allocating space and performing intermediate computations
for variables that can be statically proven to have zero derivatives.
A more complete description of vary analysis can be found in [16].

For the example in Figure 4, assume that we apply vary analysis
with the set of inputs designated as independent containing only
the variable b. Table 1 shows the IN/OUT sets for this example.
The assignment of a depends on the initial value of the variable
b, and therefore a varies after statement 1. Since the variable b
is reassigned in statement 2, the variable b will not vary after
statements 2 and 3.



Table 1. Results of vary analysis with b as independent over the
CFG in Figure 4.

After Iteration

Node Set Orig. #1 #2 #3

Entry IN {b} {b} {b} {b}
OUT {b} {b} {b} {b}

If... IN {} {b} {ab} {ab}
OUT {} {b} {ab} {ab}

1:a=b IN {} {b} {ab} {ab}
OUT {} {ab} {ab} {ab}

2:b=c IN {} {ab} {ab} {ab}
OUT {} {a} {a} {a}

3:c=d IN {} {a} {a} {a}
OUT {} {a} {a} {a}

Exit IN {} {b} {ab} {ab}
OUT {} {b} {ab} {ab}

3.2 Complexity of Iterative Data-Flow Analysis
We can use iterative data-flow analysis to solve vary. The data-flow
analysis equations for the vary analysis are as follows:

IN [n] =
[

p∈pred(n)

OUT [p]

OUT [n] = {x | x ∈ defs[n] and (IN [n] ∩ uses[n]) *= ∅}

In the above data-flow analysis equations, the union
S

over all
predecessor OUT sets is the meet operation for the vary analysis.
The expression that computes the OUT set based on the IN set is
the transfer function.

An iterative data-flow analysis algorithm visits each node in the
control-flow graph, or in the case of MPI programs the MPI-ICFG,
and computes the IN and OUT sets for the nodes until all IN and
OUT sets converge.

The upper-bound on the number of visits per node is O(hd),
where h is the lattice height and d is the depth of the graph.

3.3 Lattice Height
The lattice is a partially-ordered set of data-flow values. For vary
analysis, the domain of possible data-flow values is the powerset
of the set of all variables in the program, 2V . For the example
program in Figure 4, the lattice is shown in Figure 5. The height
of a powerset lattice is the size of the original set (e.g., |V |).

The height of the lattice affects the complexity because all of
the IN and OUT sets excluding possibly those for the entry and
exit nodes will start at the top value in the lattice and will stop when
reaching the bottom value.

Figure 4 provides an example where the full height of the
lattice is traversed. Assume that instead of variable b being in the
independent variables that the variable d is in the initial IN set
for the entry node. Table 2 shows the contents of all IN/OUT sets
for this modified example. On the first iteration of the data-flow
analysis, the variable c will join the vary set in the OUT set for
statement 3. The second iteration over the nodes will propagate the
set including variable d and c into the top of the loop and will
result in b becoming vary after statement 2. The third iteration will
propagate the set {bcd} into the top of the loop and will result in a
becoming vary after statement 1. A fourth iteration will propagate

{ }

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

Figure 5. Lattice for vary analysis and program in Figure 4.

Table 2. Results of vary analysis with d as independent over the
CFG in Figure 4.

After Iteration

Node Set Orig. #1 #2 #3 #4 #5

Entry IN {d} {d} {d} {d} {d} {d}
OUT {d} {d} {d} {d} {d} {d}

If... IN {} {d} {cd} {bcd} {abcd}{abcd}
OUT {} {d} {cd} {bcd} {abcd}{abcd}

1:a=b IN {} {d} {cd} {bcd} {abcd}{abcd}
OUT {} {d} {cd} {abcd}{abcd}{abcd}

2:b=c IN {} {d} {cd} {abcd}{abcd}{abcd}
OUT {} {d} {bcd}{abcd}{abcd}{abcd}

3:c=d IN {} {d} {bcd}{abcd}{abcd}{abcd}
OUT {} {cd} {bcd}{abcd}{abcd}{abcd}

Exit IN {} {d} {cd} {bcd} {abcd}{abcd}
OUT {} {d} {cd} {bcd} {abcd}{abcd}

the set {abcd} into the loop as well as the exit node. The final
iteration will check convergence.

3.4 Depth of a Graph
The depth of a graph is the maximal number of retreating edges on
any cycle-free path [2]. A retreating edge is an edge that is not a
tree edge within a depth-first spanning tree of the graph and that
targets a node that is an ancestor in the DFST. A cycle-free path is
defined as a list of nodes in a graph (n0, n1, ..., nk) such that for
each ni and ni+1 in the list there is an edge (ni, ni+1) in the graph.
Also, each of the nj must be unique.

The depth of the graph also affects the complexity of an iterative
data-flow analysis algorithm in that each node could be visited
lattice height multiplied by depth times, O(hd). In Figure 4, the
depth of the graph is 1. The path (3, 1, 2) is a cycle-free path
containing the one retreating edge 3 → 1.

3.5 Reducible Graphs
In a structured program (i.e., one built with structured control-flow
constructs), the depth of the control-flow graph is equivalent to the
maximum loop depth. It is also possible to determine the depth of a
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Path: G!B!C!F
Depth: 1

Path: C!F!G!B!E
Depth: 2

Figure 6. Different DFSTs on the same graph may produce differ-
ent depths. The number beside the tree edges indicates order of in-
clusion into the DFST. The provided paths indicate the same graph
is able to have more than one depth based on the DFST.

structured program’s control-flow graph in O(N+E) time because
such a control-flow graph is reducible [12].

A reducible graph is one where all retreating edges in any depth-
first spanning tree (DFST) are edges between a node and one of
the node’s dominators. A dominator for node X is a node Y that
must be in any path from the entry of the flow graph to the node
X. When a graph is reducible, it is possible to apply T1 and T2
transformations [30] so as to reduce the whole graph to one node.
A T1 transformation removes self loops, and a T2 transformation
collapses a child node into a parent node if the child only has edges
from one parent node.

T1 and T2 transformations are useful because they enable the
generation of data-flow summaries for a whole procedure and thus
significantly reduce the cost of iterative data-flow analysis [4, 24].
T1 and T2 transformations can also be used to compute the depth
of a reducible flow graph.

4. The Depth of Irreducible Graphs
The problem with MPI-ICFGs is that the communication edges of-
ten break the structure of the program and cause the MPI-ICFG to
become irreducible. Using a reduction from the directed Hamilto-
nian cycle problem, Fong and Ullman [12] show that determining
the depth for irreducible graphs is NP-complete. In this section, we
describe some characteristics of irreducible graphs, explain in de-
tail why MPI-ICFGs are irreducible, and then present a worst-case
exponential algorithm for computing the depth of arbitrary graphs.

4.1 Irreducibility
All directed graphs can be categorized as being either reducible or
irreducible. Therefore, any graph that is not reducible is irreducible.
Irreducibility of a graphs means that computing the graph’s depth
is an NP-complete problem and therefore any such computation
will have exponential worst-case complexity. Another difficulty
that irreducible graphs introduce is that they can have a different set
of retreating edges based on the depth-first spanning tree (DFST).
Different sets of retreating edges can result in different depths for
the same graph.

Figure 6 shows two DFSTs over the same graph that result in
different depths. The bold edges are tree edges, and the number
beside each tree edge indicates the order in which it was added to
the DFST. The dashed edges are retreating edges. The rest are cross
edges. The DFST on the left starts with the edge (A → B), and the
DFST on the right starts with the edge (A → E). After the starting
edge is selected, all other edges are visited in a depth-first manner;

subroutine posPow(a,n,ans) (0)
ans = 0 (1)
call foo(ans,a) (2)
do k=2, n, 1 (3)

call foo(next,ans) (4)
ans = next (5)

end do (6)
end subroutine (7)
subroutine foo(y,x) (8)

y = 2 * x (9)
end subroutine (10)

ENTRY: posPow(a,n,ans)

ans = 0

CALL:  foo(ans,a)

RETURN: foo(ans,a)

k = 2

CALL:  foo(next,ans)

k = k + 1

ENTRY: foo(y,x)

y = 2 * x

EXIT: foo(y,x)if (k < n)

EXIT: posPow(a,n,ans)

RETURN: foo(next,ans)

Figure 7. Irreducibility induced by ICFG.

outgoing edges are visited in alphabetical order. The DFST on the
left contains only one retreating edge, so its depth can be at most
1. The DFST on the right has two retreating edges, so its depth can
be at most 2. Indeed, the cycle-free paths displayed in Figure 6 for
each DFST confirm those depths.

To work around this issue in our computation of the depth of
MPI-ICFGs, we ensure that the traversal order being used in the
depth analysis is based on the same DFST as that used in the data-
flow analysis.

4.2 Irreducibility of MPI-ICFGs
Irreducibility may be introduced into the MPI-ICFG graph in two
ways. First, the MPI-ICFG is based on an ICFG, where we have
one interconnected graph for the entire application program. When
there are multiple calls to the same subroutine, there will be multi-
ple edges from the various call nodes to the entry of the called sub-
routine. An example of how this introduces irreducibility is seen in
Figure 7. This example contains two calls to the same subroutine.
One call is within a loop; the other call is outside the loop. Fig-
ure 7 also shows the ICFG for this example where each call node
now has an outgoing edge to the entry node of the called subrou-
tine and each return node has an in-coming edge from the exit node
of the called subroutine. The edge from foo’s exit node to the in-
loop return node constitutes an edge entering the middle of the loop
from outside the loop, since there exists a path from the first call,
through foo, into the loop. This situation with two entries into a
loop is irreducible.

A second way that irreducibility may be introduced into the
MPI-ICFG is through the use of communication edges. Commu-
nication edges connect the call nodes of communication sending
calls to the return nodes of compatible communication receiving
calls. An example of how this introduces irreducibility is seen in



b = calcStuff(id) (0)
if (id = 0) then (1)

sum = b (2)
do k=1, n, 1 (3)

call recv(a,any,...) (4)
sum = sum + a (5)

end do (6)
else (7)

call send(b,0,...) (8)
end if (9)

. . .

CALL:  
send(b,0,…)

RETURN: 
send(b,0,…)

if (id = 0)

ENTRY:

. . .

EXIT

ENTRY:

. . .

EXIT

CALL:  
b = calcStuff(id)

RETURN: 
b = calcStuff(id)

sum = sum + a
k = k + 1

CALL:  
recv(a,any,…)

RETURN: 
recv(a,any,…)

ENTRY:

. . .

EXIT

sum = b
k = 1

If (k > n)

Figure 8. Irreducibility induced by MPI-ICFG.

Figure 8. One branch of the if-statement contains a call to send();
the other branch contains a loop with a call to recv(). A communi-
cation from the send call node to the receive return node represents
an edge entering the middle of a loop, which renders the graph ir-
reducible.

4.3 Why Not Use Node Splitting?
Node splitting [1, 3, 10] is an analysis technique for making an
irreducible graph reducible. Node splitting causes the duplication
of one of the regions involved in an irreducible loop within the
region graph. If the irreducible loop is due to a goto statement
within one procedure, then the amount of duplication might not
be that significant. Since irreducibility is introduced in MPI-ICFGs
due to a communication edge leaving one procedure and entering
a loop in another procedure, we hypothesize that the amount of
duplication that would be needed to perform node splitting might
be on the order of full procedures and therefore become possibly
exponential in the size of the original flow graph [9].

4.4 Algorithm for Computing Depth of Irreducible Graphs
Fong and Ullman [12] present an algorithm that computes the depth
of a reducible graph in O(N + E) time by using T1 and T2
reductions. A T1 reduction removes a self-edge from a node, and
a T2 reduction collapses a node into a parent node when the node
only has one parent node. The result of their algorithm is the largest
number of retreating edges on any path ending at each node. The
depth is then the maximum of all those values.

We use their algorithm as a starting point on an irreducible
graph so as to reduce the structured parts of the graph as much
as possible. We present our algorithm in Figures 9, 10, and 11.

Figure 9 shows the variables that are used throughout the depth
computation. Yn is the maximum depth of any reducible path that

/ / Yn i s t h e max d e p t h f o r any r e d u c i b l e pa th
/ / t h a t ends a t node n .

/ / Xn,m i s t h e t h e max d e p t h f o r any r e d u c i b l e pa th p
/ / t h a t ends a t node n and p does n o t i n t e r s e c t t h e
/ / pa th from t h e r e g i o n ’ s r o o t t o t h e node m .

/ / R i s t h e s e t o f r e t r e a t i n g edges i n t h e
/ / r educed graph G′ .

/ / Cn i s t h e c o l o r f o r node n .

/ / PATH i s a l i s t o f nodes f o r t h e c u r r e n t
/ / c y c l e−f r e e pa th under i n v e s t i g a t i o n .

Figure 9. Variables used in the T1T2ComputeDepth, computeRe-
ducibleDepth, and maxDepthPath algorithms.

Algo r i t hm T1T2ComputeDepth ( G(V, E) , entry )
f o r a l l v ∈ V i n i t i a l i z e Yv = 0

f o r a l l v ∈ V and w ∈ V i n i t i a l i z e Xv,w = −∞

i n i t i a l i z e R = ∅

/ / Reduce t h e graph w h i l e comput ing r e d u c i b l e d e p t h s
/ / and d e t e r m i n i n g a s e t o f r e t r e a t i n g edges .
/ / Computes a l l Yn , Xn,m , and R .
G′ = computeReduc ib leDep th (G , entry )

/ / S i s t h e s e t o f a l l r e t r e a t i n g edges i n G′ and
/ / a l l o u t g o i n g edges f o r nodes t h a t are t h e end o f
/ / a pa th w i t h some r e d u c i b l e d e p t h .
S = R ∪ {(v, w) | Yv > 0}

d e p t h = maxe∈S maxDepthPath (G′ , e )

re turn d e p t h

Figure 10. The T1T2 algorithm for computing the depth of an
irreducible graph.

ends at node n. Any irreducible edges exiting n could then begin
a path containing irreducible retreating edges. A path through the
root of a region to an exit node of a region will have no retreating
edges.

Figure 10 shows pseudocode for the T1T2Algorithm for com-
puting the depth of an irreducible graph. The main idea is to use
T1 and T2 reductions to compute the reducible depth as first de-
scribed by Fong and Ullman [12] and then use the more direct ap-
proach of investigating all cycle-free paths starting from retreating
edges or from the end of reducible paths with depth to determine
the full depth of the graph. Searching all possible cycle-free paths
even from a subset of starting edges can result in a worst-case al-
gorithm complexity that is exponential in the size of the graph.

Figure 11 details the algorithm for computing the depth of the
reducible portions of the flow graph. The results of the depth-
first traversal in the computeReducibleDepth algorithm are (1) the
Yn values will be set for every node, thus indicating the greatest
number of retreating edges on any reducible path ending at node
n, and (2) the variable R will contain a set of retreating edges that
remain in the reduced graph.

Figure 12 shows the maxDepthPath algorithm, which will find a
maximum-depth path out of all of the paths that start at a given edge
and return that depth. We compute the maximum depth by finding
the largest depth on an irreducible path starting from an edge and
adding in the reducible depth for the source node in the starting
edge.



Algor i t hm computeReduc ib leDep th (G(V, E) , v )
Cv = grey

/ / Depth− f i r s t t r a v e r s a l and f i n d r e t r e a t i n g edges .
f o r each o u t g o i n g edge (v, w) from v

i f Cw '= g rey t h e n / / t r e e edge
G′ = computeReduc ib leDep th (G ,w )

e l s e i f Cw = g rey t h e n / / r e t r e a t i n g edge
R = R ∪ (v, w)

/ / Apply T1 and T2 r e d u c t i o n s as much as p o s s i b l e .
whi le r e d u c t i o n s a r e s t i l l p o s s i b l e

/ / Check f o r T1 a p p l i c a b i l i t y .
i f t h e r e i s a s e l f l oop (s, t) f o r r e g i o n (v ) t h e n

/ / F i r s t up da t e t h e maximal r e d u c i b l e d e p t h
/ / en d i ng a t any node i n t h e r e g i o n .
f o r each node n i n t h i s r e g i o n

/ / The max d e p t h pa th en d i ng a t n e i t h e r
/ / s t a y s t h e same or i s t h e pa th t h a t ends
/ / a t node s , goes t h r o u g h t h e s e l f loop ,
/ / and t r a v e r s e s t r e e edges t o end a t n .
Yn = max(Yn, 1 + Xs,n)

Remove t h e s e l f l oop from R and E′ .

/ / Check f o r T2 a p p l i c a b i l i t y .
i f S = r e g i o n ( v ) on ly has a s i n g l e
p r e d e c e s s o r r e g i o n P t h e n

/ / A l l p a i r s o f nodes i n r e g i o n s P and S .
f o r each n ∈ P and f o r each m ∈ S

/ / A l l nodes a t f r o n t i e r o f P t h a t have
/ / o u t g o i n g edges i n t o S .
f o r each node p ∈ P such t h a t (p, root(S)) ∈ E′

/ / The l a r g e s t d e p t h pa th t o n w i l l be i n
/ / r e g i o n P and any pa th t o m i n r e g i o n
/ / S must go t h r o u g h one o f t h e p nodes .
Xn,m = max ( Xn,m , Xn,p )

/ / A node m i n r e g i o n S migh t have a
/ / l a r g e r d e p t h pa th t h a t ends a t a p
/ / node and t h e n t r a v e r s e s S t r e e edges .
Xm,n = max ( Ym , Xp,n )

f o r a l l t h e nodes i n S
f o r each node p ∈ P wi th an edge t o S

Yn = max ( Yn , Yp )

Merge r e g i o n s P and S and
remove edges from P t o S .

/ / Re tu r n t h e reduced graph where each r e g i o n i s a
/ / node and edges go be tween r e g i o n s .
re turn G′(V ′, E′)

Figure 11. The computeReducibleDepth algorithm uses T1 and
T2 reductions to reduce as much of the graph as possible and to
compute the maximum reducible depth that ends at each node.
This is an implementation of the algorithm presented by Fong and
Ullman [12].

Algo r i t hm maxDepthPath (G′(V ′, E′) , (v, w) , p a t h )
/ / For f i r s t edge , need t o i n i t i a l i z e t h e pa th .
i f PATH i s empty t h e n

Put v a t t h e end of t h e p a t h

/ / I n i t i a l i z e maxDepth based on t h e max d e p t h
/ / r e d u c i b l e pa th t h a t ends a t v .
maxDepth = Yv

/ / P lace t h e t a r g e t o f t h e edge on t h e c u r r e n t pa th .
Put w a t end of PATH .

/ / Find t h e max d e p t h f o r any pa th t h a t s t a r t s a t w .
maxDepth = 0
f o r each edge (w, t)

i f t i s n o t i n t h e p a t h
d e p t h = maxDepthPath (G′ , (w, t) )
i f ( d e p t h > maxDepth ) maxDepth = d e p t h

i f (v, w) i s a r e t r e a t i n g edge i n R
maxDepth = maxDepth + 1

/ / Modi fy c u r r e n t pa th b e i n g i n v e s t i g a t e d .
Take w o f f t h e p a t h .

re turn maxDepth

Figure 12. The maxDepthPath algorithm adds the maximum depth
for any reducible path that ends at the first node in the path to the
maximum depth of any path in the irreducible graph.

5. Depth Analysis Results
In this section, we compute the depth of a number of MPI bench-
marks. We use the depth to calculate the worst-case number of it-
erations and compare those figures to actual numbers of iterations
for analyses on both the ICFG and the MPI-ICFG. We present our
methodology and discuss our results below.

5.1 Methodology
We implemented two algorithms to find the depth of a graph. The
Direct algorithm explores all cycle-free paths starting from a re-
treating edge in the depth-first-spanning tree (DFST) of the data-
flow graph. For reducible graphs, all DFSTs of the graph have
the same depth. However, this situation is not true for irreducible
graphs, as illustrated in Section 4.1. Thus, to find the true maxi-
mum depth of an irreducible graph, one would need to investigate
all DFSTs of the graph. We limit our depth results to the DFSTs
used in the data analysis runs, since those directly affect the actual
number of iterations. Specifically, we ensure that the depth com-
puted by our depth analysis uses the same DFST as that used by
the reverse-post ordering in the iterative data-flow analysis.

The T1T2Algorithm described in Section 4.4 uses T1 and T2
reductions to reduce the number of regions and inter-region edges,
memoizing the reducible depth in each region, before traversing
paths in the reduced graph. This algorithm also starts from the same
DFST as that used in the actual data analysis runs.

We implemented the construction of the MPI-ICFG, the data-
flow framework for an MPI-ICFG, and a handful of analyses using
the OpenAnalysis toolkit [27] coupled with the Open64/SL com-
piler infrastructure [25]. We used the data-flow analysis frame-
work to apply two data-flow analyses (reaching constants and
vary) to various benchmarks. The NAS Parallel Benchmarks [5],
labeled NASPB, were obtained from http://www.nas.nasa.gov/-
Software/NPB/; the benchmark labeled SOR is an implementation
of successive overrelaxation developed by one of the authors [19];
and the benchmark labeled Biostat is a parallelized version of a
biostatistical analysis function provided by D. Spiegelman [20].
Sweep3d [22] is a benchmark code derived from a real application,



Table 3. Benchmark Description: Number of communication
calls, nodes, edges and communication edges.

# of # of # of # of Comm
Benchmark Source Sends Recvs Nodes Edges Edges

Spiegelman: BiostatBiostat (lglik3) 5 3 75 90 5

NASPB: CGCG (conj grad) 8 8 154 200 64

NASPB: LULU 1 (rhs) 4 4 309 402 4

NASPB: LULU 2 (ssor) 8 8 589 760 16

NASPB: MGMG 2 (psinv) 6 1 372 479 6

Hovland: SORSOR (mainsor) 17 15 283 362 87

ASCI: Sweep3dSw 1 (sweep) 1 1 359 467 1

3D Discrete Ordinates Neutron Transport, which solves a neutron
transport problem. Table 3 summarizes our benchmarks. Column
2 indicates the source of the benchmark along with the procedure
of interest at the top of the call graph. Columns 3 and 4 char-
acterize the type and amount of MPI-communication calls in the
benchmark that contributed to the communication edges listed in
the last column. Columns 5 and 6 list the number of nodes and
non-communication edges in the MPI-ICFG and ICFG graphs for
each benchmark.

5.2 Results
In this section, we first present our results on the performance of
both the T1T2Algorithm and the Direct algorithm, with special em-
phasis on the achieved potential of the T1T2Algorithm over the Di-
rect algorithm. We then discuss our depth results and compare the
depth-defined upper-bound number of iterations to actual numbers
of data-flow analysis iterations.

5.2.1 Algorithm Evaluation
We calculated the depth of both the ICFG and MPI-ICFG for each
benchmark using the Direct algorithm and then the T1T2Algorithm,
for a total of four calculations per benchmark. In Figure 13, we
show the number of cycle-free paths investigated by either algo-
rithm versus the size of the graph (nodes + edges or regions + edges,
as appropriate). The size of the graph is shown along the horizontal
axis, and the number of paths is shown along the log-scale vertical
axis. The upper-bound complexity of the Direct algorithm is ex-
ponential – on the order of EN+1. The time to traverse all paths
prohibits the direct calculation of the depth on large graphs. Our
benchmarks are medium-sized, but in some cases the calculations
still took a while. The two marks in the far upper-right in Figure 13
represent the two Direct calculations on LU 2, our largest bench-
mark. Each calculation took more than 14 days to complete on a
2.6 GHz Intel Core 2 duo processor with 2GB 1067 MHz DDR3
memory running the Mac OS X (v. 10.5.8) operating system.

The T1T2Algorithm uses T1 and T2 reductions to reduce the
number of regions and inter-region edges before traversing paths
to calculate the graph depth. Figure 14 shows the reduction in
the graph size for each benchmark for both the ICFG and MPI-
ICFG graphs. On average, the T1T2Algorithm was able to reduce
the graph size by 80% for MPI-ICFGs and by 86% for ICFGs,
before traversing inter-region edges. This algorithm is still worst-
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Figure 13. Graph size vs. number of paths traversed – includes
output from both algorithms over ICFG and MPI-ICFG graphs
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Figure 14. Reduction in graph size (regions + edges) by T1T2
algorithm.
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Figure 15. Number of paths traversed by the T1T2Algorithm dis-
played as a percentage of those traversed by the Direct algorithm
on the benchmark MPI-ICFGs.

case exponential; however, it ultimately traverses fewer paths than
does the Direct algorithm, enabling depth calculation on larger
graphs.

As a last measure of the T1T2Algorithm, we compared the num-
ber of cycle-free paths traversed by both algorithms. In Figure 15,
we display the number of paths traversed by the T1T2Algorithm
as a percentage of the number of paths traversed by the Di-
rect algorithm on the benchmark MPI-ICFGs. For MG 2, the
T1T2Algorithm traversed as few as 3.5% of the number of paths
traversed by the Direct algorithm. On average, the T1T2Algorithm
traverses only 10% as many paths on the MPI-ICFGs and only 7%
as many on the ICFGs as does the Direct algorithm.
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Figure 16. Graph depth of the ICFG and additional depth due to
communication edges in the MPI-ICFG.

5.2.2 Depth and Data-Flow Analysis Results
We calculated the depth of both the MPI-ICFG and ICFG for each
benchmark. The results are shown in Figure 16. As expected, the
MPI-ICFG is at least as deep as the ICFG for each benchmark. The
depths ranged from a low of 4 in the ICFG of MG 2 to a high of 16
in the MPI-ICFG of LU 2. For Sw 1, with only one communication
edge, the depth is the same for both graphs. CG and SOR are the
benchmarks with the highest number of communication edges: 64
and 87, respectively. For both of these, the depth of the MPI-ICFG
is at least twice that of the ICFG.

Let’s take a closer look at the LU benchmarks. We first present
a detailed discussion of the source of the depth of LU 1 and then a
brief description of LU 2 components that contribute to its depth.
LU 1 is a subset of LU 2 and all of the MPI-calls in LU 1 are
within the exchange 3 subroutine. exchange 3 performs either
north-south communication or east-west communication depend-
ing upon a parameter value. For north-south communication, there
are six consecutive if-statements that guard MPI calls in the fol-
lowing order: receive, send, wait, receive, send, wait. Four of the
six if-statements contain double-nested loops. The east-west com-
munication is similar. Each send and receive has a unique tag in-
dicating direction (e.g. from north), which results in exactly two
communication edges in the north-south communication and two
in the east-west. The code is written such that an if-statement con-
taining a receive immediately precedes the if-statement containing
the matching send.

The depth of exchange 3 itself is 7. However, individually, we
observe that without communication edges, the depth is 5 and that
when using duplicate unique send/receive/wait routines, the depth
is 4. Collectively, we observe that without communication edges
and with duplicated routines, the depth is 2 (from the double-nested
loops). Interestingly, in the presence of communication edges and
multiple calls to the same routines, without any of the six if-
statements per communication pattern the depth is only 3. The if-
statements that guard each MPI call within exchange 3 enable
paths that skirt the tree-edge calls of the DFST in favor of the
retreating-edge calls and calls incident upon communication edges.

The rhs subroutine is the root of LU 1’s call graph, containing
two calls to exchange 3 and some quad-nested loops. The depth of
LU 1 is 9. There are many different cycle-free paths in LU 1 with
9 retreating edges and we describe two types below. One type starts
with a cycle-free path of depth 7 from exchange 3, branches out
to the return node of the first call to exchange 3 within rhs, and
continues through to the second call. It re-enters exchange 3 and
reaches a communication edge not in the prefix path. The second
call to exchange 3 and the communication edge bring the number
of retreating edges to 9.

The second path type starts with 4 retreating edges from a
quad-loop within rhs, continues to the second call to exchange 3,

where it enters and skirts/takes a combination of 3 retreating-edge
calls and a communication edge, for a total of 9 retreating edges.

The root of LU 2’s call graph, ssor, calls rhs twice: once in-
side and once outside of a major timing loop. It contains a looping
call to blts, which in turn calls exchange 1 twice. exchange 1
has a similar structure to exchange 3, with four sends, four re-
ceives and single-nested loops. These calls combine with those in
exchange 3 resulting in 16 communication edges, in which 8 of
them cross procedure boundaries: 4 in each direction.

Once we have the depth for each benchmark graph, we are able
to calculate the upper-bound number of iterations for a data-flow
analysis per benchmark. We collected the number of variables per
benchmark per graph as an expression of the lattice height and
calculated the iteration upper bound as the product of the depth
and the number of variables. Table 4 displays these results for
each benchmark. The left half of the table contains results for the
MPI-ICFG graph and the right half for the ICFG. In the first three
columns for each graph we record the number of variables, the
depth, and the iteration upper bound. For these benchmarks, the
number of variables is much larger than the depth and has a larger
impact on the iteration upper bound. The iteration upper bounds
range from one to tens of thousands. Should the data-analysis
actually approach these upper bounds, the data-analysis would be
prohibitively time consuming.

Fortunately, the actual number of data-flow analysis iterations
is strongly correlated with the depth and the lattice height does not
have a significant effect. We performed two data-flow analyses,
reaching constants and vary, on each graph per benchmark. In
Table 4, we recorded the number of iterations of each analysis. The
number of iterations for the reaching constants analysis is listed
in the fourth column for each type of graph, with the number of
iterations for the vary analysis listed in the last column. The actual
number of iterations per analysis is far below the upper bound. The
largest number of iterations was in the SOR benchmark, 17 for each
graph and analysis. There was little difference between the actual
number of iterations per analysis between the ICFG and the MPI-
ICFG. The single difference occurred in the reaching constants
analysis over the MPI-ICFG of LU 2, taking two more iterations
than that over the ICFG.

6. Conclusions
This paper explores the algorithmic complexity of performing data-
flow analysis on MPI programs when the program is modeled with
an MPI-ICFG graph. An MPI-ICFG is an interprocedural control-
flow graph with communication edges between sends and receives.
More precise data-flow analysis is possible for nonseparable anal-
yses when it is possible to model the flow of data over communi-
cation edges. Our results show that the depth of the MPI-ICFGs
is a good indicator for how many iterations over the graph will be
needed for convergence. We compute the depth for some bench-
mark MPI programs despite the fact that computing the depth for
irreducible graphs is NP-complete. We also present an algorithm
that builds on the 1976 Fong-Ullman algorithm for computing the
depth of a reducible graph. By reducing the reducible parts of the
graphs first, the graphs on average became 80% smaller with 90%
fewer cycle-free paths, resulting in a 10x faster algorithm.
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Table 4. Depth, upper bound and actual iterations for ICFG and MPI-ICFG.
MPI-ICFG ICFG

Up. Bound Actual Iter. Up. Bound Actual Iter.

Benchmark # Vars Depth Iter. R-Consts Vary # Vars Depth Iter. R-Consts Vary

Biostat 208 7 1456 5 6 202 5 1010 5 6
CG 299 12 3588 5 7 285 5 1425 5 7
LU 1 431 9 3879 5 9 417 8 3336 5 9
LU 2 1697 16 27152 10 16 1631 12 19572 8 16
MG 2 517 6 3102 7 9 503 4 2012 7 9
SOR 863 10 8630 17 17 821 5 4105 17 17
Sw 1 376 8 3008 8 11 374 8 2992 8 11
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